Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.996
Filtrar
1.
J Am Soc Mass Spectrom ; 35(3): 433-440, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38324783

RESUMO

Post-translational oxidation of methionine residues can destabilize proteins or modify their functions. Although levels of methionine oxidation can provide important information regarding the structural integrity and regulation of proteins, their quantitation is often challenging as analytical procedures in and of themselves can artifactually oxidize methionines. Here, we develop a mass-spectrometry-based method called Methionine Oxidation by Blocking with Alkylation (MObBa) that quantifies methionine oxidation by selectively alkylating and blocking unoxidized methionines. Thus, alkylated methionines can be used as a stable proxy for unoxidized methionines. Using proof of concept experiments, we demonstrate that MObBa can be used to measure methionine oxidation levels within individual synthetic peptides and on proteome-wide scales. MObBa may provide a straightforward experimental strategy for mass spectrometric quantitation of methionine oxidation.


Assuntos
Metionina , Racemetionina , Metionina/química , Oxirredução , Espectrometria de Massas/métodos , Racemetionina/metabolismo , Alquilação , Proteoma/química
2.
Drug Des Devel Ther ; 18: 29-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38225973

RESUMO

Background: The preclinical diagnosis of tumors is of great significance to cancer treatment. Near-infrared fluorescence imaging technology is promising for the in-situ detection of tumors with high sensitivity. Methods: Here, a fluorescent probe was synthesized on the basis of Au nanoclusters with near-infrared light emission and applied to fluorescent cancer cell labeling. Near-infrared methionine-N-Hydroxy succinimide Au nanoclusters (Met-NHs-AuNCs) were prepared successfully by one-pot synthesis using Au nanoclusters, methionine, and N-Hydroxy succinimide as frameworks, reductants, and stabilizers, respectively. The specific fluorescence imaging of tumor cells or tissues by fluorescent probe was studied on the basis of SYBYL Surflex-DOCK simulation model of LAT1 active site of overexpressed receptor on cancer cell surface. The results showed that Met-NHs-AuNCs interacted with the surface of LAT1, and C_Score scored the conformation of the probe and LAT1 as five. Results: Characterization and in vitro experiments were conducted to explore the Met-NHs-AuNCs targeted uptake of cancer cells. The prepared near-infrared fluorescent probe (Met-NHs-AuNCs) can specifically recognize the overexpression of L-type amino acid transporter 1 (LAT1) in cancer cells so that it can show red fluorescence in cancer cells. Meanwhile, normal cells (H9c2) have no fluorescence. Conclusion: The fluorescent probe demonstrates the power of targeting and imaging cancer cells.


Assuntos
Nanopartículas Metálicas , Neoplasias , Humanos , Corantes Fluorescentes , Neoplasias/metabolismo , Imagem Óptica/métodos , Metionina/química , Racemetionina , Succinimidas , Ouro/química
3.
Org Biomol Chem ; 22(6): 1085-1101, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231504

RESUMO

Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.


Assuntos
Peptídeos , Proteínas , Eletroquímica , Proteínas/química , Peptídeos/química , Aminoácidos , Metionina/química
4.
J Mol Biol ; 436(5): 168439, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185322

RESUMO

The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.


Assuntos
Adenilil Ciclases , Proteínas de Bactérias , Oscillatoria , Fotorreceptores Microbianos , Trifosfato de Adenosina/química , Adenilil Ciclases/química , Adenilil Ciclases/efeitos da radiação , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Flavina-Adenina Dinucleotídeo/química , Transdução de Sinais , Espectroscopia de Infravermelho com Transformada de Fourier , Oscillatoria/enzimologia , Domínio Catalítico , Triptofano/química , Metionina/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efeitos da radiação , Ativação Enzimática
5.
J Inorg Biochem ; 252: 112455, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38141433

RESUMO

The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.


Assuntos
Metionina , Saccharomyces cerevisiae , Metionina/química , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/química , Citocromos c/química , Heme/química , Ligantes , Racemetionina
6.
Chem Commun (Camb) ; 60(6): 646-657, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116662

RESUMO

The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.


Assuntos
Proteínas da Matriz Extracelular , Iminas , Peroxidase , Humanos , Peroxidase/química , Proteínas da Matriz Extracelular/química , Lisina , Hidroxilisina , Colágeno Tipo IV/química , Metionina/química
7.
Curr Opin Struct Biol ; 83: 102720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862762

RESUMO

The Radical SAM (RS) superfamily of enzymes catalyzes a wide array of enzymatic reactions. The majority of these enzymes employ an electron from a reduced [4Fe-4S]+1 cluster to facilitate the reductive cleavage of S-adenosyl-l-methionine, thereby producing a highly reactive 5'-deoxyadenosyl radical (5'-dA⋅) and l-methionine. Typically, RS enzymes use this 5'-dA⋅ to extract a hydrogen atom from the target substrate, starting the cascade of an expansive and impressive variety of chemical transformations. While a great deal of understanding has been gleaned for 5'-dA⋅ formation, because of the chemical diversity within this superfamily, the subsequent chemical transformations have only been fully elucidated in a few examples. In addition, with the advent of new sequencing technology, the size of this family now surpasses 700,000 members, with the number of uncharacterized enzymes and domains also rapidly expanding. In this review, we outline the history of RS enzyme characterization in what we term "epochs" based on advances in technology designed for stably producing these enzymes in an active state. We propose that the state of the field has entered the fourth epoch, which we argue should commence with a protein structure initiative focused solely on RS enzymes to properly tackle this unique superfamily and uncover more novel chemical transformations that likely exist.


Assuntos
Metionina , S-Adenosilmetionina , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Metionina/química , Metionina/metabolismo
8.
Curr Protoc ; 3(8): e861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37540769

RESUMO

In this procedure, we describe a high-throughput absolute quantification protocol for the protein-bound sulfur amino acids, cysteine (Cys) and methionine (Met), from plant seeds. This procedure consists of performic acid oxidation that transforms bound Cys into cysteic acid (CysA) and bound Met into methionine sulfone (MetS) followed by acid hydrolysis. The absolute quantification step is performed by multiple reaction monitoring tandem mass spectrometry (LC-MS/MS). The approach facilitates the analysis of a few hundred samples per week by using a 96-well plate extraction setup. Importantly, the method uses only ∼4 mg of tissue per sample and uses the common acid hydrolysis protocol, followed by water extraction that includes DL-Ser-d3 and L-Met-d3 as internal standards to enable the quantification of the absolute levels of the protein-bound Cys and Met with high precision, accuracy, and reproducibility. The protocol described herein has been optimized for seed samples from Arabidopsis thaliana, Glycine max, and Zea mays but could be applied to other plant tissues. © 2023 Wiley Periodicals LLC. Basic Protocol: Analysis of protein-bound cysteine and methionine from seeds.


Assuntos
Aminoácidos Sulfúricos , Aminoácidos Sulfúricos/análise , Cisteína/análise , Cisteína/química , Cromatografia Líquida , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Metionina/análise , Metionina/química , Metionina/metabolismo , Sementes/química , Sementes/metabolismo , Racemetionina
9.
Protein Sci ; 32(9): e4738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37518893

RESUMO

Amino acids (AAs) with a noncanonical backbone would be a valuable tool for protein engineering, enabling new structural motifs and building blocks. To incorporate them into an expanded genetic code, the first, key step is to obtain an appropriate aminoacyl-tRNA synthetase. Currently, directed evolution is not available to optimize AAs with noncanonical backbones, since an appropriate selective pressure has not been discovered. Computational protein design (CPD) is an alternative. We used a new CPD method to redesign MetRS and increase its activity towards ß-Met, which has an extra backbone methylene. The new method considered a few active site positions for design and used a Monte Carlo exploration of the corresponding sequence space. During the exploration, a bias energy was adaptively learned, such that the free energy landscape of the apo enzyme was flattened. Enzyme variants could then be sampled, in the presence of the ligand and the bias energy, according to their ß-Met binding affinities. Eighteen predicted variants were chosen for experimental testing; 10 exhibited detectable activity for ß-Met adenylation. Top predicted hits were characterized experimentally in detail. Dissociation constants, catalytic rates, and Michaelis constants for both α-Met and ß-Met were measured. The best mutant retained a preference for α-Met over ß-Met; however, the preference was reduced, compared to the wildtype, by a factor of 29. For this mutant, high resolution crystal structures were obtained in complex with both α-Met and ß-Met, indicating that the predicted, active conformation of ß-Met in the active site was retained.


Assuntos
Aminoacil-tRNA Sintetases , Metionina tRNA Ligase , Metionina tRNA Ligase/química , Metionina/química , Aminoacil-tRNA Sintetases/metabolismo , Racemetionina , Aminoácidos , Sítios de Ligação
10.
ACS Appl Mater Interfaces ; 15(29): 34497-34504, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439628

RESUMO

Prion disorders are a group of lethal infectious neurodegenerative diseases caused by the spontaneous aggregation of misfolded prion proteins (PrPSc). The oxidation of such proteins by chemical reagents can significantly modulate their aggregation behavior. Herein, we exploit a series of vanadium-substituted Keggin-type tungsten and molybdenum POMs (W- and Mo-POMs) as chemical tools to oxidize PrP106-126 (denoted as PrP), an ideal model for studying PrPSc. Due to the band gaps being larger than that of Mo-POMs, W-POMs possess higher structural stability and show stronger binding and oxidation effect on PrP. Additionally, the substitution of W/Mo by vanadium elevates the local electron distribution on the bridged O(26) atom, thereby strengthening the hydrogen bonding of POMs with the histidine site. Most importantly, with the number of substituted vanadium increases, the LUMO energy level of POMs decreases, making it easier to accept electrons from methionine. As a result, PW10V2 displays the strongest oxidation on the methionine residue of PrP, leading to an excellent inhibitory effect on PrP aggregation and a significant attenuation on its neurotoxicity.


Assuntos
Proteínas Priônicas , Príons , Príons/química , Príons/metabolismo , Vanádio , Metionina/química , Racemetionina
11.
J Mass Spectrom ; 58(5): e4919, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37130582

RESUMO

In a broader scenario, the forced degradation studies provided by the ICH guidelines for Q1A, Q1B, and Q2B degradation studies allow to know the CQA of the molecule used as a drug product, to determine the appropriate analytical methods, excipients, and storage conditions ensuring the quality of the drug, its efficacy, and patient safety. In this study, we focused our attention on understanding how oxidative stress is performed by H2 O2 -impacted small synthetic peptides that do not contain residues susceptible to oxidation such as methionine. Among the amino acids susceptible to oxidation, methionine is the most reactive and depending on the structure of the protein where it is exposed, it tends to oxidize by converting into methionine sulfone or methionine sulfoxide by oxidation of its sulfur atom. Scouting experiments obtained by forced oxidative stress conditions are presented on two small synthetic peptides that do not contain any methionine residues spiked with different amounts of H2 O2 , and they are analyzed by LC-MS/MS. Less frequent oxidation products than those commonly observed on proteins/peptides-containing methionine have been characterized on both peptides. The study demonstrated that somatostatin, by means of one residue of tryptophan on the molecule, can generate traces of several oxidized products detected by UPLC-MS. Furthermore, even at a negligible level, oxidation on tyrosine and proline in cetrorelix that does not contain methionine nor tryptophan has been detected by UHPLC-MS/MS. Identification and quantification of oxidized species were achieved by high-resolution MS and MS/MS experiments. Thus, FDSs undoubtedly aid the evaluation of the CQAs as an important component of the characterization package as recommended by HAs and ICH, facilitating the understanding of unforeseen features of the studied molecule used as drugs.


Assuntos
Peróxido de Hidrogênio , Triptofano , Humanos , Cromatografia Líquida , Peróxido de Hidrogênio/química , Triptofano/química , Espectrometria de Massas em Tandem , Proteínas/química , Hormônio Liberador de Gonadotropina/metabolismo , Metionina/química , Somatostatina/metabolismo , Oxirredução , Estresse Oxidativo
12.
J Org Chem ; 88(13): 8123-8132, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235643

RESUMO

The regioselective synthesis of multiple disulfide bonds in peptides has been a significant challenge in synthetic peptide chemistry. In this work, two disulfide bonds in peptides were regioselectively synthesized via an approach of MetSeO oxidation and deprotection reaction (SeODR), in which the first disulfide bond was constructed through oxidation of dithiol by MetSeO in a neutral buffer, and the second disulfide bond was then directly constructed through the deprotection of two Acm groups or one Acm group and one Thz group by MetSeO in acidic media. Synthesis of two disulfide bonds by the SeODR approach was achieved through a one-pot manner. Moreover, the SeODR approach is compatible with the synthesis of peptides containing methionine residues. Both H+ and Br- drastically promoted the reaction rate of SeODR. The mechanistic picture for the SeODR approach was delineated, in which the formation of a stable Se-X-S bridge as the transition state plays a critical role. The SeODR approach was also utilized to construct the three disulfide bonds in linaclotide, conferring a reasonable yield.


Assuntos
Dissulfetos , Peptídeos , Indicadores e Reagentes , Dissulfetos/química , Peptídeos/química , Metionina/química , Metionina/metabolismo , Oxirredução
13.
Chem Commun (Camb) ; 59(45): 6917-6920, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37200079

RESUMO

Ru-Alkylidene catalysed olefin metathesis generates metabolically stable cystine bridge peptidomimetics with defined geometry. Deleterious coordinative bonding to the catalyst by sulfur-containing functionality found in cysteine and methionine residues can be negated by in situ and reversible oxidation of thiol and thioether functionality, as disulfides and S-oxides respectively, to facilitate high yielding ring-closing and cross metathesis of bioorthogonally protected peptides.


Assuntos
Cisteína , Metionina , Cisteína/química , Metionina/química , Peptídeos/química , Cistina/química , Racemetionina
14.
J Biol Chem ; 299(7): 104845, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209826

RESUMO

The increase in antibiotic resistance calls for accelerated molecular engineering strategies to diversify natural products for drug discovery. The incorporation of non-canonical amino acids (ncAAs) is an elegant strategy for this purpose, offering a diverse pool of building blocks to introduce desired properties into antimicrobial lanthipeptides. We here report an expression system using Lactococcus lactis as a host for non-canonical amino acid incorporation with high efficiency and yield. We show that incorporating the more hydrophobic analog ethionine (instead of methionine) into nisin improves its bioactivity against several Gram-positive strains we tested. New-to-nature variants were further created by click chemistry. By azidohomoalanine (Aha) incorporation and subsequent click chemistry, we obtained lipidated variants at different positions in nisin or in truncated nisin variants. Some of them show improved bioactivity and specificity against several pathogenic bacterial strains. These results highlight the ability of this methodology for lanthipeptide multi-site lipidation, to create new-to-nature antimicrobial products with diverse features, and extend the toolbox for (lanthi)peptide drug improvement and discovery.


Assuntos
Química Click , Lactococcus lactis , Metionina , Nisina , Aminoácidos/metabolismo , Peptídeos Antimicrobianos/síntese química , Peptídeos Antimicrobianos/farmacologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Metionina/química , Metionina/metabolismo , Nisina/síntese química , Nisina/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
15.
Chembiochem ; 24(8): e202300082, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36881517

RESUMO

Uptake and processing of antigens by antigen presenting cells (APCs) is a key step in the initiation of the adaptive immune response. Studying these processes is complex as the identification of low abundant exogenous antigens from complex cell extracts is difficult. Mass-spectrometry based proteomics - the ideal analysis tool in this case - requires methods to retrieve such molecules with high efficiency and low background. Here, we present a method for the selective and sensitive enrichment of antigenic peptides from APCs using click-antigens; antigenic proteins expressed with azidohomoalanine (Aha) in place of methionine residues. We here describe the capture of such antigens using a new covalent method namely, alkynyl functionalized PEG-based Rink amide resin, that enables capture of click-antigens via copper-catalyzed azide-alkyne [2 + 3] cycloaddition (CuAAC). The covalent nature of the thus formed linkage allows stringent washing to remove a-specific background material, prior to retrieval peptides by acid-mediated release. We successfully identified peptides from a tryptic digest of the full APC proteome containing femtomole amounts of Aha-labelled antigen, making this a promising approach for clean and selective enrichment of rare bioorthogonally modified peptides from complex mixtures.


Assuntos
Amidas , Peptídeos , Proteoma , Metionina/química , Espectrometria de Massas/métodos , Azidas/química , Alcinos/química , Cobre/química , Reação de Cicloadição , Química Click/métodos
16.
Poult Sci ; 102(5): 102586, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966644

RESUMO

The study was conducted to investigate the effects of 2 isoforms of methionine on growth performance and intestinal health induced by methionine (Met) deficiency and Eimeria infection in broilers. A total of 720 one-day old male chicks (Cobb500) were randomly allocated to 10 groups in a 2 × 5 factorial arrangement (6 reps/group, 12 birds/cage) with diets and Eimeria challenge as the main factors. Hundred percent DL-Met, 100% L-Met, 80% DL-Met, and 80% L-Met diets were formulated to meet approximately 100 or 80% of the total sulfur amino acid (TSAA) requirement with DL-Met or L-Met as Met supplementation sources. The 60% TSAA basal diet (60% Met) was formulated without Met supplementation. At d14, the challenge groups were gavaged with mixed Eimeria spp. Growth performance was recorded on d7, 14, 20 (6-day postinfection [DPI]), and 26 (12 DPI). The gut permeability was measured on 5 and 11 DPI. Antioxidant status and gene expression of immune cytokines and tight junction proteins were measured on 6 and 12 DPI. Data were analyzed by 1-way and 2-way ANOVA before and after the challenge, respectively. Orthogonal polynomial contrasts were used for post hoc comparison. Overall, the Eimeria challenge and 60% Met diet significantly reduced growth performance, antioxidant status, and mRNA expression of tight junction genes and immune cytokines. For other Met treatments, the L-Met groups had significantly higher BWG and lower FCR than the DL-Met group from d 1 to 20. The L-Met groups had less gut permeability than the DL-Met groups on 5 DPI. Compared to the 80% Met groups, the 100% Met groups reduced gut permeability. At 6 DPI, the 80% Met groups showed higher ZO1 expression than the 100% Met groups. The challenge groups had higher Muc2 expression and GSH/GSSG compared to the nonchallenge groups, and SOD activity was lower in the L-Met groups compared to the DL-Met groups at 6 DPI. The 100% Met groups had higher GPx activity than the 80% Met groups at 12 DPI. In conclusion, during coccidiosis, the 100% Met groups had better gut integrity and antioxidant status. Met supplementation in the form of L-Met improved growth performance in the starter phase and gut permeability in the challenge phase.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Animais , Masculino , Metionina/farmacologia , Metionina/química , Eimeria/fisiologia , Galinhas/fisiologia , Antioxidantes , Suplementos Nutricionais , Racemetionina , Dieta/veterinária , Coccidiose/veterinária , Imunidade , Ração Animal/análise
17.
J Am Soc Mass Spectrom ; 34(2): 255-263, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608322

RESUMO

The normal cellular prion protein (PrPC) and its infectious conformer, PrPSc, possess a disproportionately greater amount of methionines than would be expected for a typical mammalian protein. The thioether of methionine can be readily oxidized to the corresponding sulfoxide, which means that oxidation of methionine can be used to map the surface of the conformation of PrPC or PrPSc, as covalent changes are retained after denaturation. We identified a set of peptides (TNMK, MLGSAMSR, LLGSAMSR, PMIHFGNDWEDR, ENMNR, ENMYR, IMER, MMER, MIER, VVEQMCVTQYQK, and VVEQMCITQYQR) that contains every methionine in sheep, cervid, mouse, and bank vole PrP. Each is the product of a tryptic digestion and is suitable for a multiple reaction monitoring (MRM) based analysis. The peptides chromatograph well. The oxidized and unoxidized peptides containing one methionine readily separate. The unoxidized, two singly oxidized, and doubly oxidized forms of the MLGSAMSR and MMER peptides are also readily distinguishable. This approach can be used to determine the surface exposure of each methionine by measuring its oxidation after reaction with added hydrogen peroxide.


Assuntos
Proteínas Priônicas , Príons , Animais , Camundongos , Ovinos , Metionina/química , Príons/química , Racemetionina , Mamíferos/metabolismo
18.
J Pharm Sci ; 112(2): 471-481, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36130676

RESUMO

The rational design and selection of formulation composition to meet molecule-specific and product-specific needs are critical for biotherapeutics development to ensure physical and chemical stability. This work, based on three antibody-based (mAb) proteins (mAbA, mAbB, and mAbC), evaluates residue-specific impact of EDTA and methionine on protein oxidation, using an integrated biotherapeutics drug product development workflow. This workflow includes statistical experimental design, high-throughput experimental automation and execution, structure-based in silico modeling, inferential statistical analysis, and enhanced interactive data visualization of large datasets. This oxidation study evaluates the impact of formulation parameters including pH, protein concentration, and the presence of polysorbate 80 on the oxidation of specific conserved and variable residues of mAbs A, B, and C in the presence of stressors (iron, peroxide) and/or protectants (EDTA, L-methionine). Residue-specific analysis by automated high-throughput peptide mapping demonstrates differential residue-specific effects of EDTA and methionine in protecting against oxidation, highlighting the need for molecule-specific and product-specific selection of these excipients during formulation development. Computational modeling based on a homology model and the two-shell water coordination method (WCN) was employed to gain mechanistic understanding of residue-specific oxidation susceptibility of methionine residues. The computational determinants of local solvent exposure of methionine residues showed good correlation of WCN with experimentally determined oxidation for corresponding residues. The rapid generation of high-resolution data, statistical data analysis and interactive visualization of the high-throughput residue-level data containing ∼200 unique formulations facilitate residue-specific, molecule-specific and product-specific oxidation (global and local) assessment for oxidation protectants during early development for mAbs and related mAb-based modalities.


Assuntos
Metionina , Racemetionina , Metionina/química , Ácido Edético , Fluxo de Trabalho , Racemetionina/metabolismo , Oxirredução
19.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440575

RESUMO

Chemically defined diets are commonly used in amino acid (AA) requirement studies to allow for tight control of AA delivery. However, those diets are not representative of commercial diets in the market and are unpalatable. Methionine (Met) is usually the first limiting AA in cat diets, but little is known about its requirement for adult cats. Thus, the objectives of this study were: 1) to develop a semisynthetic diet limiting in Met and evaluate its effect on acceptance and feeding behavior in cats; and 2) to evaluate the effect of different sources and inclusions of Met on preference in cats fed the semisynthetic diet. A semisynthetic diet deficient in Met and total sulfur AA (TSAA) was developed. Healthy adult male cats (n = 9) were fed (0800 and 1600 h) the semisynthetic diet top dressed with DL-Met solution (T-DLM), to meet 120% of the TSAA requirement, for 8 d. Feed intake was measured and a 30-min video recording was taken at the 0800 h feeding to evaluate feeding behavior of the cats. Following the acceptability trial, two bowl tests were performed where first choice was recorded and intake ratio was calculated as consumed food (A/A + B). Three combinations were tested: semisynthetic diet deficient in Met (T-BASAL) vs. T-DLM; T-BASAL vs. diet sufficient in Met provided 2-hydroxy-4-(methylthio)-butanoic acid (T-MHA); and T-DLM vs. T-MHA. Average feed intake remained high throughout the acceptability period (94.5% intake of total offered), but some cats decreased intake, resulting in a decrease in BW (≤2.5% of initial BW) over time (P < 0.05). Behaviors were similar among days (P > 0.05) with the exception of grooming the chest and body (P < 0.05). No preferences were observed towards a specific treatment (Met source and level) during the two-bowl tests (P > 0.05) and agreed with the cats expressing similar feeding behaviors during the preference tests (P > 0.05). In conclusion, a semisynthetic diet deficient in Met was successfully developed and can be used in studies to evaluate the effects of low protein and AA supplemented diets. Cats seem to show no preference for Met source and/or inclusion level in a semisynthetic diet application, which is of benefit for future studies aiming to determine the Met requirement in this species.


Previous studies that determined the requirement of amino acids (AA) in cats utilized experimental diets that do not represent commercial cat diets available in the market. Using this type of diets can present a challenge when applying AA requirements to commercial diet production. Thus, the goals of this study were to: 1) develop a semisynthetic diet deficient in methionine (Met) for adult cats with the inclusion of intact ingredients and to evaluate the effect of diet on behavior and acceptance; and 2) investigate the preference of a semisynthetic diet with different levels (deficient and sufficient) and sources [DL-Met and 2-hydroxy-4-(methylthio)-butanoic acid] of Met. The semisynthetic diet was well accepted by most cats. No major differences were observed in feeding behavior and preference towards Met source and level of inclusion. However, improvement in texture is recommended to increase acceptance and prevent removal of cats in feeding studies up to three weeks.


Assuntos
Aminoácidos Sulfúricos , Metionina , Animais , Gatos , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária , Suplementos Nutricionais , Metionina/química , Estado Nutricional , Racemetionina
20.
J Pept Sci ; 29(3): e3454, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36181422

RESUMO

Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.


Assuntos
Metionina , Proteínas , Metionina/química , Metionina/metabolismo , Proteínas/química , Peptídeos/química , Racemetionina/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...